viernes, 5 de marzo de 2010

Mediana

Mediana

La mediana es un valor de la variable que deja por debajo de sí a la mitad de los datos, una vez que éstos están ordenados de menor a mayor.[7] Por ejemplo, la mediana del número de hijos de un conjunto de trece familias, cuyos respectivos hijos son: 3, 4, 2, 3, 2, 1, 1, 2, 1, 1, 2, 1 y 1, es 2, puesto que, una vez ordenados los datos: 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, el que ocupa la posición central es 2:

      \underbrace{1,\ 1,\ 1,\ 1,\ 1,\ 1, }_{Mitad \; inferior} \;       \underbrace{\color{Red} 2, }_{Mediana \;} \;        \underbrace{2,\ 2,\ 2,\ 3,\ 3,\ 4}_{Mitad \; superior}

En caso de un número par de datos, la mediana no correspondería a ningún valor de la variable, por lo que se conviene en tomar como mediana el valor intermedio entre los dos valores centrales. Por ejemplo, en el caso de doce datos como los anteriores:

      \underbrace{1,\ 1,\ 1,\ 1,\ 1, }_{Valores \; inferiores} \;       \underbrace{\color{Red} 1,\ 2, }_{Valores \; intermedios} \;       \underbrace{2,\ 2,\ 3,\ 3,\ 4}_{Valores \; superiores}

Se toma como mediana  1,5 = \frac{{\color{Red}1}+{\color{Red}2}}{2}

Existen métodos de cálculo más rápidos para datos más númerosos. Del mismo modo, para valores agrupados en intervalos, se halla el "intervalo mediano" y, dentro de éste, se obtiene un valor concreto por interpolación.

Cálculo de la mediana para datos agrupados

Primero hallamos las frecuencias absolutas acumuladas Fi (ver tabla del margen derecho).

Así, aplicando la formula asociada a la mediana para n impar, obtenemos X(39+1)/2 = X20 y basándonos en la fórmula que hace referencia a las frecuencias absolutas:

Ni-1< ni =" N19">

Por tanto la mediana será el valor de la variable que ocupe el vigésimo lugar. En nuestro ejemplo, 21 (frecuencia absoluta acumulada para Xi = 5) > 19.5 con lo que Me = 5 puntos (es aconsejable no olvidar las unidades; en este caso como estamos hablando de calificaciones, serán puntos)

La mitad de la clase ha obtenido un 5 o menos, y la otra mitad un 5 o más.

Ejemplo (N par)

Las calificaciones en la asignatura de Matemáticas de 38 alumnos de una clase viene dada por la siguiente tabla (debajo):

Calificaciones 1 2 3 4 5 6 7 8 9
Número de alumnos 2 2 4 5 6 9 4 4 2
xi fi Fi
1 2 2
2 2 4
3 4 8
4 5 13
5 6 19 = 19
6 9 28
7 4 32
8 4 36
9 2 38

Calculemos la Mediana:

Primero hallamos las frecuencias absolutas acumuladas Fi (ver tabla margen derecho).

Si volvemos a utilizar la fórmula asociada a la mediana para n par, obtenemos X(38/2) = X19 y basándonos en la fórmula que hace referencia a las frecuencias absolutas --> Ni-1< ni =" N18">

Con lo cual la mediana será la media aritmética de los valores de la variable que ocupen el decimonoveno y el vigésimo lugar.

En nuestro ejemplo, el lugar decimonoveno lo ocupa el 5 y el vigésimo el 6, (desde el vigésimo hasta el vigésimo octavo)

con lo que Me = (5+6)/2 = 5,5 puntos.

La mitad de la clase ha obtenido un 5,5 o menos y la otra mitad un 5,5 o más


Propiedades e inconvenientes

Las principales propiedades de la mediana son:

  • Es menos sensible que la media a oscilaciones de los valores de la variable. Un error de transcripción en la serie del ejemplo anterior en, pongamos por caso, el último número, deja a la mediana inalterada.
  • Como se ha comentado, puede calcularse para datos agrupados en intervalos, incluso cuando alguno de ellos no está acotado.
  • No se ve afectada por la dispersión. De hecho, es más representativa que la media aritmética cuando la población es bastante heterogénea. Suele darse esta circunstancia cuando se resume la información sobre los salarios de un país o una empresa. Hay unos pocos salarios muy altos que elevan la media aritmética haciendo que pierda representatividad respecto al grueso de la población. Sin embargo, alguien con el salario "mediano" sabría que hay tanta gente que gana más dinero que él, como que gana menos.

Sus principales inconvenientes son que en el caso de datos agrupados en intervalos, su valor varía en función de la amplitud de estos. Por otra parte, no se presta a cálculos algebraicos tan bien como la media aritmética.

No hay comentarios:

Publicar un comentario